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FINITE ELEMENT MODELING FOR

CONVECTION-DIFFUSION PROBLEMS

INTRODUCTION

The simulation of thermally induced waves requires the solution of the convection-

diffusion equation. Analytical and numerical solutions of this equation have attracted consider-

able attention in a variety of engineering fields due to its wide applicability.

The theory for convective or diffusive dominated flows has been well-established and a

variety of classical approaches exist in the literature for the solution of problems in this area.

One such solution is given by Price, Cavendish and Varga [1]. Analytical solutions are valid

primarily for linear equations and their application to problems of practical interest presents

difficulties due to the limitations of such solutions. It is because of the restrictive nature of the

analytical solutions that research efforts have been focused on approximate or numerical solu-

tions of the convection-diffusion equation. A review and comparison of available numerical

methods can be found in Lee et al (1976), Ehlig (1977), and Genuchten (1977). Numerical

methods discussed in these papers include finite differences and some finite element approxima-

tions 15). Most of the numerical schemes produce results of acceptable accuracy either for con-

vection dominated flows, or for diffusion dominated flows, but they lack uniformity in perfor-

mance. Finite difference schemes are the least attractive ones due to their instability, large

oscillations, and, for some of them inherent artificial diffusion. On the other hand finite ele-

ment schemes have produced more reliable numerical solutions but their application is limited

to certain types of dispersion while performing poorly for other types. Another disadvantage of

Mumscrpt submittaed Much 14, 190.
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existing finite element solutions is that they are based on formulations restricted by the condi-

tions of a particular problem and they are limited in applications to other types of problems.

In view of the limitations and lack of uniformity of existing approaches, it is desirable to

develop a unified formulation which is capable of treating not only pure convection-through-

dispersion to pure diffusion problems, but also other types of problems governed by similar

equations. In order to achieve this, a unified variational formulation is introduced for the

convection-diffusion equation, this equation is written in terms of a generalized quantity,

defined as heat displacement [6,71, whih is similar to a mechanical displacement and has units

of length. As of this definition, changes in temperature are treated as thermal deformations

which are similar to mechanical strains.

In the first part of this study, the basic definitions are introduced and the convection-

diffusion equation is expressed in terms of the heat displacement. A variational formulation is

then derived, based on the principle of virtual work in mechanics, and by using generalized

coordinates the variational equation is written in a form equivalent to that of the Lagrangian

equation in mechanics. Since the derived equation is expressed in terms of generalized coordi-

nates, it is applicable to a wide variety of physical problems and can be solved by any numerical

method.

The variational form of the derived equation is most suitable for applying the finite ele-

ment method for its numerical solution. This is done in the second part of this study, where

the basic finite element method is used to derive two finite element models for solving initial or

boundary value problems. The first model is based on a linear approximation of the displace-

ment and the second on a third order approximation. The matrix equation for the linear model

is expressed in terms of nodal displacements and for the higher order model, in terms of nodal

displacements and nodal temperatures.

2
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Each element model can be used for: a) pure convection, b) pure diffusion, and c) mixed

convection-diffusion problems with the appropriate boundary conditions. Also, dynamic or

quasi-static solutions can be obtained respectively by retaining or neglecting the inertia term.

Numerical results are given in the third part of this study where a third-order, backward

finite difference scheme is employed for the solution of the system of differential equations

[8,9]. For the combined finite element-finite difference scheme the stability, convergence, and

accuracy are investigated and some uniform convergence criteria are discussed. Numerical

results are also given for a number of convection through diffusion cases and for three types of

boundary conditions. The present results are compared to existing analyical solutions and the

accuracies of the two finite element models are discussed.

1. BASIC EQUATIONS

Consider an incompressible medium in a flow field subjected to external heating. Intially

the medium is at a uniform temperature T, which will be referred to as the reference tempera-

ture, and the state at this temperature will be referred to as the reference state.

The instantaneous absolute temperature is denoted by T, and the difference T- T defines

the instantaneous relative temperature A9, which is a function of the space coordinates and

time. Let

T-T. _ A. (1)
T T

be defined as the temperature change per unit temperatue T, or the instantaneous relative

temperature per unit temperature. In the following it will be referred to as the temperature 0

or the dimensionless temperature.

Assuming cartesian coordinates (x,, i - 1,2. 3), the temperature field 0 satisfies the

convection-diffusion equation

3
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CO(X,,t) 0 ' 8 O(xkt) (2)

where V, is the velocity vector and k,, the thermal diffusivity (kj - ks,).

We now define a vector field H, (x1 ,t) as the heat displacement vector such that

0 - OH,(xs,0)ax, = '  ( ' t ( )

The summation convention is assumed for repeated indices throughout this study.

In the above definition, Eq. (3), 0 represents a thermal strain analogous to mechanical

strain. Note that H,(xj,t) has the dimension of displacement, which makes it analogous to a

mechanical displacement. Thus there is a one-to-one correspondence between heat

displacement-mechanical displacement and temperature strain.

Using the definition from Eq. (3), we now write Eq. (2) as follows

OH, 80+ io - k~j W- - 0 (4)

or

OH, 8H, 1 0, 0 (5)
j a t ,k OXk CT Ox(

where the thermal stress o- is defined by

o,- c TO 0 (6)

with c the heat capacity per unit volume, and ki (kj) - '.

In the above analysis the thermal flow field is governed by the three Eqs. (3), (5) and (6)

which, together with the appropriate boundary conditions, provide a complete formulation for

convective heat transfer. They are analogous to the kinematic relations, stress-strain relations

and momentum equations in mechanics.

The advantage of introducing the heat displacement vector are more apparent when the

concept of virtual work is used to derive the variational formulation. Furthermore, the above

4
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analysis is more suitable for applying the finite element method which is based on displacement

approximations.

2. VARIATIONAL FORMULATION

Following the usual procedures of the principle of virtual work in mechanics, we consider

that the medium is subjected to an arbitrary infinitesimal virtual displacement SH, from the

equilibrium configuration. The corresponding variations 80 are given by Eq. (3). Multiplica-

tion of Eq. (4) by ,SH, and integation over a volume v of the medium yields

f , ,f +, V - ku - 8 Hdv - 0

Integrating by parts and applying the divergence theorem, one obtains

f -H ? Hdv + f. V08-Idv + f" k,10 (t11)dv = f k,108,qd
at, aHXd

where n, is the unit normal vector pointing outward at the boundary surface S. From Eq. (3)

one derives

(bH,)dv -f k, dv (7)

where 80, is the Kronecker's delta and the scalar E is defined as

E - If 01 dv (8)

and plays the role of a potential function. Equation (6) is now written as follows

8E + f, X j -,8H.dv+fXU V,08 Hj dv - fS 8H~~dS. (9)

Eq. (9) may be considered as a variational principle in a broad sense and a more compact form

of this equation can be derived by introducing generalized coordinates defined as

Hi(j,t)- H(q,x,r) (10)

where the generalized coordinates q, are functions of time. The advantage of using generalized

coordinated is that Hi may be expressed in different functional forms. Care should be taken

when the time derivative of H is considered, and it should be expressed as

L -L S
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OH, OH, (II)
=- O, t

In terms of arbitary variations of the generalized coordinates, the corresponding displace-

ment field variations are

8H, = A~q, (12)
Oq,

and the variation of the potential E becomes

8E = a 8qj (13)
aOqi

In view of Eqs. (12) and (13), Eq. (9) may be written for each arbitrary variation 8./A as follows

OE OH, aHj H r Hj
h J+ f, Xj, ' dv +fXj X Vd fo-_-dS. (14)a)qk a~t 8 qA q k

From Eq. (11) one derives

al, 8 H,
aqk Oqk

and the second term in Eq. (14) is then expressed

fOH,8Hj Oil 8ur 1 D_
-dvj X - 2 -dv IIf Xj H dvi ODq v j O84D_, k a7-t ask as 4A,

where

D= - X + 1fij dv (15)

Eq. (14) then takes the form

aS + E + Lk - Qk (16)

where

X"- f , do dv (17)

and

o- fo,,, aHIdS

61
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The quantity QA can be regarded as the thermal force applied on the boundary S of the

medium of volume v. The quantity LA represents the convection term and for the case of a

solid medium (V, = 0) it is equal zero and Eq. (16) reduces to a form similar to Lagrange's

equation in mechanics. Eq. (16) as it was derived is quite general in the sense that it can be

applied to different types of media with different material properties.

Consider now a special case where the displacement field can be approximated by a linear

combination of the generalized coordinates as follows

H,(x=,t) = qA(tfk, (x,) k = 1, n, j = 1,2,3. (18)

In Eq. (18) the coefficients qA(t) represent a degree of freedom and the functionfA,(x,)

specifies the extent to which q (t) participates in the function H,(xjt). In finite element

analysis, for example, Eq. (18) may be considered as the distribution function of the displace-

ment field, where qk can then be taken as nodal displacement or nodal deformations depending

on the type of element selected.

Differentiating Eq. (18) with respect to time and space we obtain

H, - 4kfk, (19)

OH,
= =-- qkfki."

The scalar E, the vector LA and the invariant D from Eqs. (8), (15), and (17) are expressed in

terms of Eqs. (19) as follows

1
E - eqq

2

D = d 4. 4,,

Lk gkm q. (20)

7
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where

emn - f fm,.,fnjdv

dmn - f X ,jfm,fnj dv

g&,n - f,. X, Vffk.jf, .,,dv (1
g~in~ v ~k~fmjydV(21)

Substituting the specific forms of E, D, and LA from Eqs. (20) into Eq. (16) one obtains

+ (qj + e,,)q, - Q, (22)

with

= f Onf, dS (23)

Equations (22) constitute a system of n ordinary differential equations for the unknown field

parameters qA (k= In), and it may represent the heat displacement field H,. This system of n

equations can be solved together with the appropriate boundary condition by any numerical

technique. Thus this variational formulation is not restricted to applications of the finite ele-

ment method but is appropriate for applying other numerical schemes as well.

Another advantage of the derived equations is that they are not restricted to solving

convection-diffusion problems. By appropriate choice of the variables qk to represent other

physical quantities, the derived equations can be used to solve problems involving such quanti-

ties as concentration or velocity fields.

3. FINITE ELEMENT ANALYSIS

In order to demonstrate the application of the finite element method to the previously

derived variational formulation, two element models are chosen to approximate the heat dis-

placement. The first model is a linear element with minimum degrees of freedom (LE) and

the second is a higher order element with four degrees of freedom (CE), known as first order

cubic Hermitian. Although both elements are one dimensional approximations, they provide a

good test case for the performance of any variational formulations. An extension into the two

8
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dimensional space is easily obtained since the derived equations are of general form. If the

heat displacement is approximated by a third order polynomial

H(x,t) = a, + aix + a2X
2 + a 3x

3, (24)

then the temperature 0 is given by

O(x,t) = a1 + 2a2x + 3a3x
2  (25)

where a, are time dependent coefficients to be determined for each of the element models.

a. Linear element (LE)

For the linear element of length / the conditions at the nodal points are:

at x = 0 - H = H,

and

atx= /- H= H2

where H, and H2 are the nodal values of the heat displacement and the coefficients a, are given

by

a,,= H,(t), a = (H2 - HI), a2 = a 3 -0. (26)

Substituting these coefficients in Eqs. (24) and (25) yields

H(x,) = I - -j1Hi(t) + 2H () (27)

and
1

0(xt) = (H 2 (t) - H,(t)).

Note that within each element 0 varies only with time for the (LE) approximations.

The matrix coefficients of Eq. (22) are evaluated in terms of Eqs. (27) as follows

6k,, - 21 (28)

Ann~ - ~ Ii~
9
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and

Q,- -AG,. Q, Q2 - AG
where A is the cross sectional area of the element, k is the diffusivity and V is the fluid velo-

city.

In terms of Eqs. (28), Eq. (22) yields

1 12~ ; +1 [JF~ -:j + +f1 JfJ-f: (29)
b. Cubic element (CE)

For the cubic Hermitian element the coefficients a, are evaluated from the nodal values of
H(xt) and their spatial derivatives at the nodes, which are the nodal values of the temperature
S(xit).

The conditions at the nodes are

at x - 0- H = H1, 0 - 01;
and

atX- I - H- H2,0 -02;where (H1,H2) and (01,02) are the nodal values of the heat displacement and temperature
respectively. Thus, the coefficients of Eq. (24) can be found as

a. - H1, a, -

a2 - - - 1(02 + 291)1 - 3(H 2 - H)]

a3 - /- 1(02 + 01)/ - 2(H12 - H)J (30)
and the expressions for H(xt) and O(xti) are given by

H(x.) - flq! + f 12q 2 + f,3q3 + f 14q 4

l (31)
O(x,A) - h,,q + h12 q2 + h, 3q3 + h 4q4-

10
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The shape function fl, and h1, (i- 1, 2, 3) are given by

A - 3x 2  2x 3  3x 2  2x 3

2 2  13  
2  .

A2 X- -LX + "L, f14" + (32)

and

h (fL,).
Ox

and the generalized coordinates q, are

q1 I- H 1, q2 - 0 1. q3 - H 2, q4 - 02.

The corresponding ej, di,, and g1 are given by

36 31 -36 31

A 31 412 -31 -1 2eo - '30 1 -36 -31  36 -31

31-2 -31 412

156 221 54 -131

- Alk 221 412 13/ -312 (- 0 54 131 156 -221 ()

-131 -312 -221 412

-210 421 210 -421

A V -42/ 0 42/ -712 (
210~ -210 -421 210 421

421 712 -421 0

and the components of the generalized force are

Qi - -A0 1, Q3 - AG 2, Q2 - Q4 - 0. (36)
In terms of Eqs. (27)-(30), Eq. (22) yields

[d] / + [gi + [l]91 (37)
H2  H21  0 2
i2 1021

[o2J o2



G kItRA 4IDAS

or

1d) 141 + Itg) + Iellq) - IQ)
For the solution of a particular problem, the finite element models derived above are

assembled according to the direct stiffness method to obtain the global equations. The formula-

tion of the overall problem is not comp,-e, tinless boundary conditions are taken into con-

sideration. The system of n equations together with the appropriate boundary conditions can be

solved by any numerical technique used for solving ordinary differential equations. In the fol-

lowing section, the above system of equations is solved for two types of boundary conditions by

using a backward differences in time integration technique.

4. BOUNDARY VALUE PROBLEM

The one dimensional case of the convention-diffusion equation is considered here to

evaluate the two finite element models introduced previously with the following initial and

boundary conditions.

a. Convection dominated flow

The equation to be solved is

-7+ V -o (38)
I x

where V is the flow velocity of constant value.

The initial conditions are

(xO)-0, 0 x L (39)
and the boundary conditions are

!.0(0,t)- 1 0 (40)
To

T2-T0  f<t
11. 0(0.t)- 0 T.

(0

12 t___________
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b. Combined convection snd diffusion

The equation to be solved is

(0+ [ 0 (41)

where k is the diffusion coefficient.

The initial conditions are

0(X..0) - 0, 0 x < L (42)

and the boundary conditions are

a.T (O) - T. I > 0

(L.t) - 0. 1 > 0 (43)

b. 9(0.)- o 0< < t

1o< I

O(LUt - 0, 1 > 0

At this stage it is expedient to relate the dimensionless variables to the physical variables

as follows:

L' I' 2 , (44)

Tr- T T

T- - T. H T,- T, L

L k

Here L is the characteristic length, T, is a constant temperature applied at the boundary and t,

the length of time during which T, is applied at the boundary.

The equations for the two finite element models are now written in terms of the above

defined dimensionless quantities as follows,

13
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1. Linear element:

IdJ (MI - If gJ + e,,li (H) - (QI
with

fda, 12 11 !g,,J 3 V,W, -':
fee l - 6 WK2K, A and (QI - 6WK (45)

If. Cubic element:

[d1 + itg, + le,.ll HI Q)161 J J1
with

165 54 22/Wo -13/Wo

54 156 131Wo -22/WoId,. - 22/Wo 13/ Wo 4/ Wo - 31Wo'

-131Wo 22/Wo -3/WJ 4/Wo

-210 210 42/W o -42/WO

-210 210 -42/Wo 42/Wo (6

42/Wo 42W 0  0 -7/W1(

42/Wo -42/Wo 7/ Wd 0

36 -36 3/ Wo 31 Wo 0

-36 36 -3/W 0  -31Wo 2
[e~j- 14WJKo 31W o -3/W ° 4/WJ -1/W (QI - 420 WoK o

-3/Wo -3/Wo -1/W3 4/Wj 0

where W, - LI, and V and K, are the dimensionless constant velocity and diffusivity respec-

tively. The bar over the variables has been eliminated for simplicity. The boundary conditions

are transformed due to the dimensionless quantities as follows

14
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a. Convection -dominated flow

I. G(0,t)- 1.0. 1 > 0

II. 0(0,1)- 1 t > (47)

b. Convection-diffusion

I. i(,t)- 1.0, t > 0

O(LU A - 0, t >' 0 (48)

Ii. O(0,1) - 10.0, 1 > to.

0(L,t) - 0.0, 1 >0.

The assembly of the above equations for the overall problem and their modification due

to the boundary conditions is coded in a compi, ter program given in Appendix C. After solving

for the displacements of the (LE) model, the temperture for the i ', element can be obtained

through the relation

9,- Wo (H+,-H H) i- 1,n (49)

For the (CE) model, the solution of the system of equations will directly give nodal displace-

ments as well as nodal temperatures.

5. NUMERICAL SOLUTION

The one-dimensional convection-diffusion problem has been formulated by the finite ele-

ment method and its solution can be obtained from the system of ordinary differential equa-

tions in matrix form presented in the previous section. For the boundary value problem, with

given boundary conditions, numerical solutions are obtained by applying suitable numerical

integration techniques.

15
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In this section. the numeri.al errors induied h the time integration scheme and by the

finite element method are e%,aluated N ate the cow¢crgence, of the solution. Furthermore.

results are given for the different i.pes ol boundar condition, considered in the previous sec-

tion.

a. Time integralion technique

The systems ol ordinary differential equations obtained for the two element models are

solved by using a third-order, backward finite difference approximation. The general formula

for the first derivative can be written in the following form.

dy(0,) 1
di h h a,y (__ ) + O(W, ) (50)

where h is the size of the time discretization and a, are constant coefficients. If only third order

and lower terms are retained (n - 4). then the coefficients are given by

11.0 18.0 9.0 2.0a,60 ' 6.0 6 : ".0' T-60' 400(1

for the third-order approximation.

In order to evaluate the stability and convergence of the above numerical scheme, results

were obtained for a number of different time-step sizes. A stability analysis given in Appendix

A shows that the scheme is unconditionally stable. This stability is not related to error esti-

mates or rate of convergence.

Consider the case of pure diffusion (Ko - I, V, - 0) as a test case for illustrating some

numerical results. A characteristic length L - 5 is chosen to represent the semi-infinite space,

which is divided into 10 elements (TNE - 10). Results with respect to time are given for the

point x - 1.0 and for the following boundary conditions

0(0,1)- 1.0, t t 0

(LAt) - 0.0, t1; 0

16
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This choice of boundary conditions is appropriate for evaluating numerical solution errors and

convergence. Numerical results for different time step sizes are presented in Figs. 1,2 and

Table I for the two element models. The optimum time step was found to be within the range

of 0.01 to 0.2. For smaller or larger time steps the error of the numerical solution increases.

Referring to Fig. 1, it is apparent that as the time step becomes smaller, the solution does not

converge monotonically. Comparing the results for the two models, the (CE) as expected, is

much more accurate than the (LE). An optimum time step size, approximately in the range of

0.01 to 0.025, yields the most accurate results.

The non-monotonic convergence is due to the fact that the numerical solution depends

not only on the time step size but also on the spatial discretization as well. This is demon-

strated in the following, where numerical experiments provide a criterion for uniform conver-

gence.

b. Convergence of the Finite Element Solution

In order to investigate the convergence of the two finite element models, the previously

discussed problem is considered and with the same constants. The total number of elements by

which the characteristic length L is represented is designated as TNE and the numbers of ele-

ments from x - 0 to x - 1.0 is denoted by NE. The results of this part are given for two

cases, one where the time step size At is kept constant for different TNE, and the other case

where the ratio At/Ax 2 is kept constant, where Ax is the dimensionless length of an element.

Convergence For Constant At

Results for this case are given for the time step size At - 0.025 for both element models.

For the (LE) model TNE is 5, 10, 20, 30 with the NE being 1,2,4 and 6 respectively. For the

17 V
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Table 1. Numerical results for the temperature at . = 1.0 for
the (CE) model %ith constant TNE 10.

Time At= 0.2 Mt= 01 A- 005 At = 0.025 1 Exact

0.2 0.050761 0.061340 0 082475 0099901 0.113846

0.4 0.167021 0.226432 02 249,0 0254928 0.263552

0.6 0.305074 0.345081 0350841 0355827 0.361310

0.8 0.405435 0.414393 0.421731 0.425394 0.429195

1.0 0.464985 0.468150 0.473867 0.476695 0.479500

1.2 0.503298 0.509717 0.514170 0.516448 0.518605

1.4 0.535127 0.542831 0.546491 0.548389 0.550090

1.6 0.563341 0.570084 0.573147 0.57478 0.576149

1.8 0.587542 0.592999 0.595609 0.597047 0.598161

2.0 0.608034 0.612611 0.614868 0.616085 0.617074

2.2 0.625647 0.629639 0.631614 0.632687 0.633553

2.4 0.641050 0.644596 0.646344 0.647267 0.648076

(CE) model TNE is 5, 10, 20, 25 with NE being 1,2,4,5 respectively. In Fig. 3 results for the

(LE) model are presented for the temperature at x = 1.0 with respect to time for the four

different values of TNE. As one may see from this figure, the results of the finite element

solution do not converge monotonically to the exact solution as TNE increases.

For the CE, the results are given in Table 2 for the time history of the temperature of x -

1.0 and for different values of TNE (i.e. 5,10,20,25). By increasing the TNE the results show

improvement. However, increasing the number of elements does not necessarily imply uni-

form convergence.

To obtain a better view of the convergence of a typical data point, Fig. 4 shows the errors

for the temperature with respect to TNE for constant At and with respect to At for constant

20
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Table 2. Numerical results for the temperature at x = 1.0 for
the (CE) model with constant At = 0.025.

Time TNE - 5 TNE - 10 TNE - 20 TNE - 25 Exact

0.2 0.072260 0.099961 0.102454 0.102548 0.113846

0.4 0.242260 0.254928 0.256015 0,256053 0.263552

0.6 0.350094 0.355827 0.356245 0.356256 0.361310

0.8 0.422881 0.425394 0.425537 0.425540 0.429195

1.0 0.475747 0.476695 0.476705 0.476708 0.479500

1.2 0.516323 0.516448 0.516484 0.516389 0.518605

1.4 0.548726 0.548389 0.548282 0.548282 0.55090

1.6 0.575355 0.574780 0.574628 0.574627 0.576149

1.8 0.597759 0.597047 0.596864 0.596864 0.598161

2.0 0.616944 0.616085 0.615944 0.615948 0.617074

2.2 0.633653 0.632697 0.632549 0.632551 0.633553

2.4 0.648339 0.647267 0.647159 0.647161 0.648076

TNE, for both element models. The errors are evaluated at point x - 1.0 and time I 1.0.

Figure 4 clearly shows that convergence cannot be achieved by increasing the number of ele-

ments alone or by decreasing the step size alone.

Convergence For Constant At/Ax 2

In the previous analyses of the time integration technique and the finite element method,

the results demonstrated that an increase of the time step size or the number of elements alone

does not guarantee uniform convergence. This phenomenon is similar to the numerical insta-

bility of the direct finite difference analysis (e.g. [101).

A modulus M is proposed here, defined as

M - A, (52)Ax2 ,

22
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where At is the dimensionless time step size and Ax the dimensionless element length. This

modulus M is of similar form to the stability parameter of the finites difference method. By

maintaining M constant for different values of TNE, the corresponding values of At are calcu-

lated from the above definition as follows

Relation between Ax and At for M - 0.2

TNE NE Ax - ' Ax- 2  At M

5 1 1.0 1.0 0.2 0.2

10 2 2.0 4.0 0.05 0.2

20 4 4.0 6.0 1./80. 0.2

30 6 6.0 36.0 1./190. 0.2

Results for constant M are given in Fig. 5 for the (LE) and Fig. 6 and Table 3 for the

(CE).

Both sets of results represent temperture time histories for different values of TNE at

x - 1.0. As one may see from these numerical results, the convergence of the finite element

solution is uniform and approaches the exact solution as the value of TNE increases.

The error percentage is show in Fig. 7 for the particular point at x - 1.0 and t - 1.0 for

both element models. This figure clearly demonstrates the uniform convergence of the numeri-

cal solution for both element models and the decrease of numerical error as TNE increases.

Comparing the results obtained for the two parts of this section it is concluded that the

modulus M is an appropriate parameter for error control of the combined numerical scheme of

finite element and finite difference methods.

25
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Table 3. Numerical results for the temperature at x - 1.0 for
the (CE) model with constant M - 0.2.

Time TNE - 5 TNE - 10 TNE - 20 TNE - 30 ExactT t - 0.2 At- 0.025 At - 0.0025 at - 0.0055

0.2 0.069741 0.082475 0.107999 .111522 .113846

0.4 0.144791 0.248910 0.259719 .261983 0.263552

0.6 0.297175 0.350841 0.358799 .360226 0,361310

0.8 0.406438 0.421731 0.427436 .428403 .429195

1.0 0.464971 0.473867 0.478166 .478931 .479500

1.2 0.502502 0.514170 0.517715 .518280 .518605

1.4 0.534534 0.543491 0.549360 .549906 .550090

1.6 0.563076 0.573147 0.575505 .576005 .576144

1.8 0.587472 0.595604 0.597619 .598086 .598161

2.0 0.608067 0.614868 0.616490 .617113 .617074

2.2 0.625727 0.631614 0.632925 .633571 .633553

2.4 0.641165 0.646344 0.647125 .648091 .648076

A comparison of the two element models shows the superiority of the cubic one over the

linear. This higher order element not only produces a more stable solution but also a much

more accurate one than does the linear element. Even though the number of equations to be

solved for (CE) is twice the number for (LE), and the computer time required for the solution

is about two to one, the (CE) is preferred due to better accuracy even for small TNE. Another

advantage of (CE) is that any type of boundary condition may be imposed accurately to the

boundary nodal points since the generalized coordinates represent both heat displacements and

temperatures.

Similar error and convergence criteria can be derived for the dimensionless ratio At/Ax

when the convection-diffusion equation is solved (V.,K. d 0) or when the pure convection

28
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equation (K,, - 0, 0, - 1) is solved Using the latter as a test case we choose the same

characteristic length L as in previous examples and the same constants The boundary condi-

tion is assumed to be a half-sine wave with period 2 1r and the initial conditions are lero, 1 e

O(x.0) - 0. This type of boundary condition is suitable for investigating solution con'ergence

since it has a continuous form. Results for the convergence of the numerical solution are

presented in Figs. 8-Il. The first two figures (8 and 9) show temperature time histories at .% -

1.0 for the two models (LE) and (CE) respectively. The time step size is kept constant and

TNE is given four different values to show convergence of the solution with respect to A.

Figure 10 shows temperature time histories for the (CE) model with a constant value for TNE

and four different values for At. It is apparent from these figures that uniform convergence is

not obtained by changing only At or Ax. Numerical experimentation showed that when the

value of the ratio At/Ax is maintained constant uniform convergence of the solution is

obtained. Results for this case are given in Fig. II for the (LE) model with four values of

TNE and corresponding values of At. Similar results were obtained for the (CE) model. The

value for the ratio At/Ax was equal to 0.05.

Comparing the above results for the case of pure convection it is apparent that the ratio

At/Ax is the appropriate parameter for error control of the numerical solution.

As a last test for the stability of the solution experimentations were performed with

different values for the characteristic length L ranging from I to 5 and constant TNE. Since for

every different value of L the values of Ax will change, the ratio At/Ax and the modulus M

were kept constant by adjusting the value of At accordingly. It was observed that changes in

the values of L had no effect on the solution and on the propagation of the wave. For small

values of TNE as L becomes smaller, for example TNE - 5 and L - 1, the numerical solution

becomes more accurate. This is expected since Ax is five times smaller for L - I than for

L - 5 (i.e. Ax , 0.2 for L - and TNE - 5 while Ax - 1.0 for L - Sand TNE - 5).

I j - 30
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c. Numerical Results For Boundary Value Problems.

In applying the derived finite element formulation to diffusion-convection problems, the

semi-infinite space is approximated by the characteristic length L with a time-dependent tem-

perature applied on its boundary. Three different cases of boundary conditions are considered

and results are obtained for both element models.

Boundary conditions:

Casel 1(O,t) = 1, 1 > O;
I= , 0 < ,. r ,

Casel o1 (0.t)=

0, t > t;

Isin (nt) 0 < t < I.

Case Ill O(O,t) = t , .

The boundary condition at infinity (x = L) is the same for all cases

O(Lt) = 0

and the initial condition for all cases is

O(x,0) = 0

Numerical solutions of the governing equation

-O0 + V 0 Ko - K, -0 (53)at 0ax 08x 2

are obtained by solving the system of n equations represented by

A, , + B,jQ, - Q,, (54)

where A, and B,, are the global matrices, given in terms of Eq. (45) for the (LE) model and

Eq. (46) for the (CE) model.

Numerical results for the above boundary value problems were obtained for the charac-

teristic length L - 5, divided into TNE - 30 for the (LE) model and TNE - 20 for the (CE)

35
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one. The corresponding element lengths and time step sizes used in the numerical solution are

given in Table 4.

Table 4. Time step sizes for the numerical solution.

TNE Ax At At/Ax At/Ax 2

LE 30 1/6 0.0075 0.045 0.27

CE 20 1/4 0.0125 0.05 0.2

Temperature time histories are given in Figs. (12-19) for the point at x = 1.0 and tem-

perature distributions as a function of x are given in Figs. (20-27) at time t = 2.0. Tempera-

ture time histories presented in Figs. (12-15) are for the (LE) model and in Figs. (16-19) for

the (CE) model. Similarly, temperature distributions for the (LE) model are given in Figs.

(20-23) and in Figs. (24-28) for the (CE) model. In each figuie results are given for pure con-

vection (K,, - 0.0, V,, = 1.0), pure diffusion (K, - 1.0, VO = 0.0) and for two cases of

diffusion-convection, (K,, 0.1, V, = 1.0) and (K, 1.0, V, - 1.0). The analytical solution

for pure convection is presented by a solid line in all figures.

For the first case of boundary conditions, Figs. (12), (16), (20) and (24), the numerical

solution shows good agreement with the analytical one. The oscillations around the discon-

tinuity damp out as the wave front progresses. The error can be controlled by the TNE used.

A finer discretization reduces the error of the numerical solution around the discontinuity.

This finer discretization can be either uniform or localized around the dicontinuity. Although

the TNE used for both models is rather small, the results obtained depict only small errors.

For the second case of boundary conditions, Figs. (13), (17), (21) and (25), t, - 1.0 was

used which corresponds to a square wave propagating through the half-space. For pure convec-

tion, the (LE) model propagates the square wave but its shape is distorted due to numerical

36
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dispersion. On the other hand, the (CE) model gives a much better approximation of the wa,-e

but the oscillations of the numerical solution around the discontinuity are still present. These

oscillations are inherent in any numerical solutions as is shown by a Fourier analysis in Appen-

dix B. The oscillations and the error can be minimized by a finer discretization or by introduc-

ing some artificial diffusion into the numerical solution. However, such an artificially intro-

duced diffusion will not allow a realistic evaluation of the developed finite element models, and

will introduce artificial errors when true diffusion is present. From the obtained results it can

be seen that there is no phase lag between the exact and numerical wave forms, and, even for

the rather coarse discretization used the shape is well approximated.

The last set of boundary conditions represents the propagation of a sine wave through the

half-space. In Figs. (14), (18), (22) and (26) results are given for t,, = 1.0 and in Figs. (15),

(19), (23) and (27) the sine wave is continuously applied at the boundary. For the (LE) model

results show some small error but the shape of the wave is not distorted. The higher order ele-

ment model (CE) shows an excellent agreement with the exact wave even for the small

number of elements used (TNE = 20). For these boundary conditions, an increase in the TNE

will improve the results for the (LE) model but it will have a very small effect to the alreadly

very accurate results of the (CE) model. For all the cases of boundary conditions and all

choices of the constants K, and V , the numerical solutions produced accurate results and the

thermally induced waves propagate through the half-space in a very satisfactory manner.

SUMMARY AND CONCLUSIONS

A variational formulation for the convection-diffusion equation has been presented in this

report, and, based in this formulation, two finite element models have been developed for the

purpose of solving problems on propagation of thermally-induced induced waves.
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The introduction of a new quantity, defined as heat displacement, is the basis for a gen-

eralized development of the convection-diffusion equation. The advantage of such a formula-

tion is that it can be used to develop a displacement formulation for the finite element method.

Furthermore, due to the generalized nature of the heat displacement, the formulation may be

extended to other types of equations. Another advantage of the formulation is the introduced

thermal force, for which one should point out its significance as a boundary force.

The physical conditions for the semi-infinite space require that 0 - 0 as x - -, since the

last nodal point of the finite element approximation of the half space represents infinity one

should impose the above condition at this point. The thermal force is then zero due to zero

temperature. This assumption is not the correct one since the temperature at the last nodal

point changes as the thermal wave propagates. If we consider the last nodal point as a boundary

point and the thermal force as a boundary force, which is equal to the temperature at that

point, then the conditions at the boundary point are properly adjusted. The presence of this

boundary force into the formulation produces a much more accurate temperature distribution

close to the boundary, since it represents the effect of the neglected portion of the medium.

For the solution of the matrix differential equation, a third order backward finite

difference scheme was used which is proved to be unconditionally stable. Further, the conver-

gence of the two element models was investigated and some convergence criteria were dis-

cussed.

The two finite element models developed in this study were used successfully to solve

problems involving both convection and diffusion with prescribed boundary conditions for the

temperature. Comparison of present results with analytical solutions show the performance of

the cubic element model to be superior to the linear one. However, the performance of the

(LE) model should not be underestimated, especially when one considers the crude approxima-

54
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tion and the coarse space discretization involved. The choice between the two models for

specific applications should depend on the particular needs of the problem under consideration

In conclusion, the generalized form of the derived formulation, its efficiency in handling

various types of boundary conditions, and its efficiency in solving not only diffusion-dominated

flows but also convection-dominated flows deserve special emphasis. The superiority of the

cubic element model over the linear one, especially for simulating sharp wave fronts, is also

noted. An extension of the present formulation to two dimensional problems and its applica-

tion to other types of equations are planned as future work.
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APPENDIX A

The variational formulation in this study and the application of the finite element method

produced a system of simultaneous ordinary differential equations which may be represented by

D,4, + C,,q, - Q. (A.1)

For the solution of (A.1), the first derivative is approximated by a third-order Newton back-

ward difference scheme and at time step n has the form

_L= (llq' ") - 1gqj(n-1) + 9q(?-2) - 2qn- 3)). (A.2)

In terms of (A.2) the system (A.I) yields

11lD,, + 6AtCi~jqj(n) - 6AtQI ) - D,[-18q ("- ' ) + 9q,(" - - 2qj n-3)]

or

[118,j + 6AtD 'CkJlqj(") - 6AtD,-'Qj + 8,j[18q t("-) - 9q1(n-2) (A.3)
+ 2qj(n-3)].

Let the errors associated with each time step be given by

E k - 0, 1,2, 3.

If these errors are added to (A.3), one obtains

A, (qn) + Ej(,)] -64 Qj( ) + 8,j[18(qj( - ) + El"- ')

- 9(q (n- 2) + Ej(n-2)) + 2(qM(nS3) + Ej/-t 3))i (A.4)

where

Aij - 118 U + 6AtD;'Ckj. (A.5)

Subtraction of (A.4) from (A.3) yields

AIJEj(") - BQII$Ej( t") - 9j(,-2) + E (
R
-
3)
]

or

E -,) AUtI1SEj ("-t) - 9EJ(M-2) + 2Ej(R-3)].
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For solution stability the errors at various time steps should be related as follows

E j . ER- E . - < g jk E k m -  3 )

with the amplification matrix g, given by

g, - A,k-Bjk (A.6)

where

BkJ - 8Aj1 18W(2) - 9WO) + 2] (A.7)

and

W 2) < WO) 1.

If one assumes that W( 2) -W11 - 1, then (A.7) becomes

Bk, -18 k

and (A.6) yields

gj- IIAJ (A.8)

for stable solution g, 4 b,, then Eq. (A.8) yields

For the last relation to be valid the following should hold

I j + ~jA tD;I 1CkJ8 jj 1' (A.9)

which is true for all values of At as long as the product DkT' Ckj is positive definite. Thus, the

numerical integration scheme is unconditionally stable.

As an example, consider the case of the linear element model to approximate the solution

given by (A.1). Assuming that the characteristic length L, is divided in three equal elements,

the matrices Dj and C,, are given by

2 10

Dj- X 1 4 1 0

0012
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1 -1 0 0 -1 1 0 0
Ko -1 2 -1 0 V -1 0 10ax 0 -1 2 -1 0 -1 0 1

0 0-1 1 0 0-1
For a two-point boundary value problem with

q (o,t) - q (L,t) - 0
the above matrices reduce to

2Ko  Ko  V
4 1 Ax AxlO2

6 , 41  C- K0  V, 2Ko

Ax 2 Ax
Substituting (A.10) into (A.9) one obtains

9K, V,3  6Ko Vo

DA "-Cx +  2 A x 2
15Ax 6K, Vo 9Ko V '- 0

Ax 2 Ax 2
or

I x I2 A >_ (A. 11)
55 Ax J AxJ0(A)

which is true for all values of At and Ax. Therefore, the numerical scheme is unconditionally

stable.
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APPENDIX B

The presence of oscillation in a numerical solution for the propagation of discontinuities is

known as Gibbs phenomenon. To better understand this pheomenon, assume that a rectangu-

lar wave H(t) of perod 27r (Figure B.1) is propagating with a certain velocity.

.H(t)

t

0 2rr

Figure B. I

An approximation of this wave can be obtained by a Fourier series for which the partial

sum of the first 2n terms is given by

H 2n(t) -+ 2 1 sin(2k-1)1 (B.)
2 k kI 2k-i

with the cosine terms all zero. This partial sum H2, overshoots the function H(l), as Gibbs

pointed out, by the amount

H2,2 1.0895 as n -c

In fact, not only does this overshoot of H 2, exist, Figure B.2, but the sum also oscillates about

H() with these oscillations decreasing only away from the discontinuity.
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Figure B.2

The phenomenon can be explained by rewriting Eq. (B.1) as follows

H2(= ( + -- cos(2k-l)x dx2 7r A-]

1 + 2 f' cos2-I)x dx
2 r 0 A I I

1 1 i' sin2nxL + -JL smx dx (B.2)
2 2 0 sinx

The maxima and minima of H2 ,, are obtained from Eq. (B.2) by requiring that

dH 2,(t)
dt

This requirement is satisfied when

sin2nt 0,
sint

which is true for

mIT

t-m= 1,2,... 2n-1.
2 n

The maxima and minima alternate and their values have been calculated by Carslow [I]. It is

apparert that the oscillations of the approximation of the rectangular wave can be only reduced

by including additional terms into the partial sum H 2.(t). Damping of the oscillations and

reduction of the overshoot can be achieved by introducing certain artificial factors into the

terms of the summation.
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APPENDIX C

CC CC:CCC:CCC CCCC CCC CCC C ':C CCC C C C CCC CCC CC C.CC CC CC CCC CCC CCC CC CCC CCCCC CCC C C:CC CCC C
C C
C C

c * *
C: * THERMAL WAVE PROPAGATION * C

C: * * C
C: **************************************************************** C
C C

C THIS PROGRAM SOLVES THE DIFFUSION-CONVECTION EQUAlION C
C C
1: DH/DT + V*DH/DX - D(K*DH/DX)/DX = 0 C
C c
C FOR V=1 < K=0 : ADVECT I ON C
C: FOR V=O & K=I : DIFFUSION C
C C
C C
CCC C C C C C C C C C C C CCCOCCCOCC0CCCCC CCC CCC CCCC0CCC0CCCC CCC CCC C CCC CCC C:C C CCCCCC CCCC

C
PROGRAM WAVE(N2, NK )

C
C*
C ***************************************************************************
0*
C:* PROGRAM CONSTANTS;
C*

C* N = NUMBER OF ELEMENTS = NUMEL
C* N+I = NUMBER OF NODES = NNODE
C* WO = INVERSE OF ELEMENT LENGTH
C* VO = DIMENSIONLESS VELOCITY
C* TK = DIMENSIONLESS DIFFUSIVITY
C* DT = DIMENSIONLESS TIME STEP SIZE
C* TO = DIMENSIONLESS TIME CONST. FOR BOUNDARY CONDITIONS
L* TMAX = MAXIMUM TIME LIMIT FOR INTEGRATION
C* IFREQ = CONSTANT FOR PRINTING RESULTS
C* LCASE = ORDER OF F.E.M.
C* = 1 ,FIRST ORDER ELEMENT
C* = 2 , CUBIC HERMITIAN ELEMENT
C* NB = NUMBER OF BOUNDARY CONDITIONS
C* IBC = INITIAL CONDITINS CONST.
C* = 0 , I.C. SET TO ZERO
C* = I , I.C. SPECIFIED AT NODES
C* AN = INTEGRATION CONSTANTS, N = 0,1,2,3,4,5
C* Ri = BOUNDARY CONDITION CONST.
C* RN = BOUNDARY CONDITION CONST.
C:* Ri = 1.0, RN = 0.0 SQARE WAVE
C* Ri = 0.0, RN = 1.0 SINE WAVE
C* AT = GLOBAL MASS MATRIX
0* BT = GLOBAL STIFFNESS MATRIX
C* TE = TEMPERATURE VECTOR
C* H = DISPLACEMENT VECTOR
C* C = PARTITIONED GLOBAL MATRIX
C*
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C CIMMN/DLCIC[: 1 / N, W(O, VO, TK, TO, [iT. I MAX, I FRED, LC AcE, NE(, IBC
COMMON/ElLCC2/ Xl (200)) ,X2( 200) ,X3 :(2010),*X4 ( ,0') , YX (200)
CC'MMC'N/BlCK:'3/ X(0),w(20,T 20 ()*F u
CO~MMN/B'-C',4/ NT. N).N$(0),NE 0
COMMON/E'LOCK5/ A(0,Al,A2,A' :,A4,A5,N1,Rl,RN
DIMENSION AT(N2- ,N-),ET(N2.'N2),I:(NI,NIK),IP(N )
DIMENSION TIME (200) ,TT (200)
DIMENSION IDI (20)), I1D2(20)
DATA STOP /'STC,'/

CALL R$STOIP

C ... READ AND PRINT TITLE ..

100 READ (5, 120,. END=P999) IDElI
READ 120'. 1D2
PRINT 125, ID1,1D2

................. READ AND PRINT DATA ..
c

READ 500, LCASE,Rl.RN
IF(LC-.ASE. EC. I ) GO TO: 5
WR ITE (6, 2015)
00 TO 6

5 WR ITE (6,.2020)
6L CONTINUE

READl(5,505) N,W(0,VO),TK.,TO,DT,TMAXIFRE,IC,N4
WRITE (6, 600) N,WO,VC0,TK.,T,T,TMAX,IFREC,I4C:

C..ELEMENT C:C'NSTANTS
C

NUMEL = N
NNC'DE = N + 1

NO' = LC:ASE*(N - 1)
NI = LCASE*NIJMEL +1
N2 = LC:AEi;E*(NUMEL- + 1)

MK= NfK - I

T =0. 0
IT=

C:..INTEG'RATIO'N COCNSTANTS FOR 3RD CORDER BlAC:fK-WAR~lDI.....
C.

A0 = I11./ 6.
Al =3.

A2= -1.5
A:3 = 1. /3.
A4 = 0.0

I CUNTE = 0

C ... REAri INITIAL C:ONDITIC'NS

C:ALL I NCClN ( N2. N', NUMEL, NNODEE)
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: ..... SET BOUNDARY CONE1ITIONS F'R TEMFERATURE .....

...... READ NODE NUMBERS AND SPECIFIED TEMPERATLIREE: ......

DO 110 I=I,NNODE

INX = I
READ(5,.10i5) WORD,NT,TNT
IF (WORDI.EQ.S T':F') 0O TO 115

NTS(I) = NT
TE(NTS()) = TNT

110 C:ONTINUE

C ..... COUNT NO'ES WITH SPEC.IFIEL' TEMPERATURE:-..S....

115 NNTS = INX - I

NNQ':- = N2 - NNiS
NX = NNTS

NY = NNOs.
C
C .. SPECIFY THERMAL_ Fi-RCES AT NODES ..

DO 130 I=I,NY
NC'S(I) = I + 1

TE(NOS(I)) = 0.0
13:' CONTINUE

WRITE (6, :060)
DO 160 I=1,NNTS
WRITE(6, I06.5) I,NTES(I ),TE(NT-( I ) )

160 CONTINLiE
DO 15 I=I,N2
DC1 15 J=I,N2

AT(I,J) = 0.0

15 BT(I,.J) = 0.C
C:
C ..... FORM THE MATRIX COEFFICIENT BT(I,J)
C
C FROM THE MASS & STIFFNESS GLOBAL MATRICES .....
C

CALL ELMAT(N2, NK,NUMEL,AT,BT)
C

C:
C: ..... PARTITION THE SINGULAR MATRIX BT(I,J)
C ACCORDING TO BOUNDARY CONDITIONS TO C(I,J)
C

DO 50 I=1,NNQS
DO 50 J=I,NNQS

C(I,J) = BT(NQS(I),NQS(.I))
DO 45 K=I,NNTS

45 C(IJ) = C(IJ) -

I BT(NCJS( I) ,NTS(K) )/BT(NTS(K),NTS(K) )*BT(NTS(K),NO.S (J))
50 CONTINUE
C

CALL DECOMP(NY,NY,C,IP,IER)
C
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C ..... PRINT INITIAL CONDITIONS & AFTER FIR'ST TIME !,TEF'
C'
C THE RESULTS AT 'S-F'ECIFIED TIME INTERVALS ...
C
10 CALL OUTPUT(N2, NW, T, NUMEL, NNODE)
C

C.....START TIME INTEGRATION
C
20 T = T + DT

C ..... PLOT RESULTS WITH RESPECT TO TIME .....
C:

IT = IT + I
IWO = INT(WO)
N4 = IWO + I

IF(MOD(IT,IFRE0).NE.O) GO TO 25
ITR = IT/IFREQ

TT(ITR) = TE(N4)
TIME(ITR) = T

25 CONTINUE
C
C: ..... FORM THE RIGHT HAND SIDE VECTOR 0(,l) OF THE MATRIX EQUATION
C
C: C:(I,J)*X(I) = t0 (J)
C

C: AND SOLVE FOR X(I) .....
C

CALL CVEC:T(N2,NX,NY,T,NUMEL,AT,BT,C,IP)
C

C ..... IF T EXCEEDS TMAX, TERMINATE INDEGRATION ...
C

IF(T.LE.TMAX) 60 TO 30
CALL ONPLOT(TIMETT•ITR)
GO TO 100

30 ICUNTE = ICUNTE + I
C:
C ..... PRINT RESULTS OR CONTINUE THE SOLUTION .....
C

IF(IC:UNTE.NE.IFRE-!) GO TO 20
ICUNTE = 0
GO TO 10

C
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C
C ........ ORMAT STATEMENTS ..
C

120 FORMAT C20A4)

125 0H***************4************************., /1SX,6******.***

482X. 6H******, / 15X, 6H******,
520X,42H DIFFUSION-CONVECTION IN ONE DIMENSION ~20X,
66H******, /1 5X. 6H******,
76X,50H--------------------------------------------------------
820H----------------------- 6X, 6H****** / 15X,. 6H*u**** , 5-2X,
96H******,/15X,6H******, 1X,20A4, IX,6H******,/15X,6H******,
11X,20A4. 1X,6H******,/1SX,6H******,

500 FORMAT(I1O,2F10.4)
505 FORMAT(I5,F6..2F8.4,3F6.4,3I5)
510 FORMAT(SFXO.4)
600 FORMAT(-'1',2x,-'N=',I2,5x,'wo)',F5.2,5X,'vO=',FE:.6,5X,',TK,=FSe.6,5X

1,'TO=-',F4.2.5X.-'DlT='. F6. 4.5X.'TMAX=',F6.3,5X,'IFREO=',13,5X,.'B.C ON
2r'.=-'.12.///)

2015 FORMAT(40)X,'C:iBIC-HERMITIAN FINITE ELEMENT APPROXIMATION',//)
2020 FORMAT(40X. 'LINEAR FINITE ELEMENT APPROXIMATION',//)
1015 FORMAT(6X,A4,I1OFIO.6)
1060 FORMAT (lOiX.'BOUINDARY CONE'IT IONS FOR TEMPERATLE',

1//,SX,'I-',4X,-'NOE-',X,'TEMPERATLIRE',//)
1065 FORMAT(2X,2(4X,13),3X,F12.3)
9999 STOP

END
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SUE4RC'TINe UL(2KHM,4

* *

C:* C:UIBEL CALCULATES THE ELEMENT MART ICES FOR THE
C:** CUBIC HERMITIAN ELEMENT MODEL

COMMON/iLOCPKX*/ N,W0,VC,,TK,TO,tT,TMAX, IFREO,LCASE,N4, IE4C'
COMMON/BLOCK3/ X(200) ,W(2C'O) ,TE(200) .H(200I) ,FQ(200>
DIMENSION 4(4,4) ,E(4,4) .AT(N2.N2),BT(N2,N2)

c
TKOC= TK

C
DO 30 L=1.NLIMEL

KLI =LCASE*iL-1)

C..ELEMENT MASS MATRIX A(1-1)...

A(1.1) 4.*W(L)**2
A(1,2) =22.*W(L)

A(1,3) 3*()2
A(1,4) =13.*W(L)

A(2,1) 22.*W(L)
A(2,2) = 15i6.0
A(2,3) =-13.*W(L)
A(2,4) =54. 0
A(3,1) 3*()2
A(3,2) =-13. *W(L)
A(3-,3) 4.*W(L)**2
A(3,4) =-22.*W(L)
A(4,1) 13.*W(L)
A(4,2) =54.0

A(4,3) -22.*W(L-)
A(4,4) 156.0

C..ELEMENT STIFFNESS MATRIX B(I,J)...
C
C..CONVEC:TIVE TERMS ..
c

'/11 = 0.0
V12 = -42.*VO
V 13 = -7. *VO*W(L)
V14 = 42.*Vo
V/21 = 42.*VO
V/22 = -210.*'/0/W(L)
'/23 = -42.*VO
V/24 = 210.*VO/WIL)
'/31 = 7. *V0*W (L)
V32 = 42. *VO
V33 = 0.0
V34 =-42. *Vo
'/4t -42.*'/0
V/42 = -210.*VC0/W(L)
V43 = 42. *VO
V/44 =210.*VO/W(L)
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C
C ..... DIFFUION TERMS .....

C, 11 = 56. *Ti.:O
CKI2 = 42.*TKO/W(L)
CI 13 = - 14.*TKO
CK14 = -42.*TKO/W(L)
CK21 = 42.*TKO/W(L)
CK22 = 504.*TKOW(L)**2
CK23 = 42.*TKO/W(L)
CK24 =-504.*TKO/W(L)**2
CK31 = -14.*TKO
CK32 = 42.*TKO/W(L)
CK33 = 56. *TKO
CK34 = -42.*TKO/W(L)
CK41 = -42.*TRO/W(L)
CK42 =-504.*TKO/W(L)**2
CK43 = -42.*TKO/W(L)
CK44 = 504.*TKO/W(L)**2

C
B(1,1) = V11 + CK1
B(1,2) = V12 + CK12
B(1,3) = V13 + CK13
B(1,4) = V14 + CK14
B(2,1) = V21 + CK21
B(2,2) = V22 + CK22
B(2,3) = V23 + CK23
B(2,4) = V24 + CK24
B(3,1) = V31 + CK31
B(3,2) = V32 + CK32
B(3,3) = V33 + CK33
B(3,4) = V34 + CK34
B(4,1) = V41 + CK41
B(4,2) = V42 + CR42
B(4,3) = V43 + CK43
B(4,4) = V44 + CK44

C
DO 25 I=I,KL

DO 25 J=1,KL
C

C ..... FORMATION OF THE GLOBAL MASS MATRIX AT(IJ) .....
C

AT((I+KLI),(J+KLI)) = AT((I+KLI),(J+KLI)) + A(I,J)
C

C ..... FORMATION OF THE GLOBAL STIFFNESS MATRIX BT(IJ) .....
C

25 BT((I+KLI),(J+KLI)) = BT((I+KLI),(J+KLI)) + B(IJ)
30 CONTINUE

RETURN
END
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SUBROUTINE DECOMP(NN, NDIM, C, IF, IER)

C.* LINEAR SYSTEM SUBROUTINE
c.*
C* DECOMPOSE THE NN X NN MATRIX C INTO TRIANGULAR L AND U SC_ THAT
C* L * U = P * C FOR SOME PERMUTATION MATRIX P.
-* MATRIX TRIANGULARIZATION BY GAUSSIAN ELIMINATION.
r *
G* INPUT..
C* NN = ORDER OF MATRIX.
C* NDIM = DECLARED DIMENSION OF ARRAY C
C:* C = MATRIX TO BE TRIANGULARIZED.
C:* OUTPUT..
I* C(IJ), I.LE.J = UPPER TRIANGULAR FACTOR, U
C* C(I,d), I.GT.J = MULTIPLIERS = LOWER TRIANGULAR FACTOR, I - L.
C* IP(K), K.LT. NN = INDEX OF K-TH PIVOT ROW.
C* IP(NN) = (-1)**(NUMBER OF INTERCHANGES) OR 0
C* IER = 0 IF MATRIX C IS NONSINGULAR, OR K IF FOUND TO BE
C* SINGULAR AT STAGE K.
C* USE SOLVE TO OBTAIN SOLUTION OF LINEAR SYSTEM.
C* DETERM(C) = IP(N)*C:(I,1)*C(2,2)*...*C(N,N).
C* IF IP(NN)=O, A IS SINGULAR, SOLVE WILL DIVIDE BY ZERO.

********************************* ********* **** ** ***** *** * *

C*
85 FORMAT(5X,'SINGULAR MATRIX C AT STAGE K =',13)

DIMENSION C(NDIM,NN), IP(NN)
C
C: ........... INITIALIZE IER, IP(NN) .....
C

IER = 0
IP(NN) = 1

IF (NN .EQ. 1) GO TO 70
NMI = NN - I

DO 60 K = 1,NMI
KPI = K + 1
M= K

DO 10 1 = KPINN
10 IF (ABS(C(I,K)) .GT. ABS(C(M,.K))) M = I

IP(K) = M
T = C(MK)

IF (M .EQ. K) GO TO 20
IP(NN) = -IP(NN)
C(MK) = C(KK)

C(K,K) = T
20 IF (T .EQ. 0.0) GO TO 80

T = I.O/T
DO 30 I = KPI,NN

30 C(I,K) = -C(I,K)*T
DO 50 J = KPINN

T - C(M,J)

C(MJ) - C(K,J)
C(K,J) = T

IF (T .EQ. 0.0) O0 TO 50
DO 40 I = KPINN

40 C(I,J) - C(I,J) + C(I,K)*T
50 CONTINUE
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60 CONT INUE
70 K =NN

IF (C(NN,NN) .EQ. 0.0) GO TO 80
RETURN

80 IER= K
IP(NN) = 0

WRITE(6,85) IER
RETURN
END

C
SUBROUTINE ELMAT(N2,NK, NUMEL.AT,BT)

C** ELMAT FORMS THE OVERALL GLOBAL MATRIX BT(I,J)
C** IF LCASE = 1, BTCI,J) IS FOR THE LINEAR MODEL.
C** IF LCASE = 2, BT(I,J) IS FOR THE CUBIC: MODEL

C* *

C*****************************************************************

COMMON/E'LOCK1/ N,WO,VO,TKTO),DT,TMAX, IFREQLC:ASE,NB. IBC:
COMMON/BLOCK5/ AO,A1,A2,A3,A4,A5,NI,R1,RN
DIMENSION AT(N2,N2),E4TCN2,N2)

C-

KL = 2*LCASE
C

IF(LCASE.EQ.1) CALL LINEL(N2,KLNUMEL.ATBT)
IF(LCASE.EQ.2) CALL CUBEL(N2,KL.NUMEL.AT.BT)

C
DO 10 I=1,N2
DO 10 J=1,N2

10 BT(I,J) =AO*AT(I,.J) + DT*BT(I,J)
RETURN
END
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SUBROIUT INE I NCON (N , N , NUlMEL, NNOEE)
C**

C** INC:ON SETS THE INITIAL COINDITIONS FOR THE !.-YSTEM
C** ARIABLES EQUAL ZERCO IF N8 0, OR TO' SPECIFIED
C:** VALUES IF NP = 1.

C**

C;OMMON/BLC'CKI/ N,W0,VO,TK,TC DTTMAX. IFREQ.LCASE,NB. JBC-
COP MON/BLOCIK2/ XI(200) ,X2(20) ,X3(200),X4(200),YX(20i)
COiMMCN/ELOCK3/ X(200) .W(200) .TE(200) .H(200) ,FQ(20C)
COMMO~N/BLOCK5!/ A0,A1,A2,A3,A4.A5,NJ,Rl,RN

C

C
DiO 10 11I,N2

X(I) -0.0
YX(I) -0.0
Xl(I) -0.0
X2(1) -0.0
X3(I) -0.0

10 X4(I) =0.0
DO 15 I=1,NNODE

H(I) -0.0
15 CONTINUE
c:
C..CALCULATE THE LENGTH FOR EACH ELEMENT...
C

rio 2') I=l,NUMEL
20 W(I) = 1./WO

IF(NE4.EQ.O) GO TO 100
C
C..IF NS 1 SET INITIAL CONDITIONS...

LO =N/10) + I
LI = N/S + 1
H(LO-I) = -W(LO)

DO 25 12L0,L1
TE(I) =1.0

25 H(I) H(I-1) + W(I)
H(LO-1) = 0.0

DO 30 1=L1,N
30 H(1+1) = H(Ll)
C

IF(LCASE.EQ.2) 00 TO 40
DO 35 I-I,NNODE

35 X(I) = H(I)
0O TO 50

40 DO 45 11I,NNODE
X(2*I-1) 2 TE(I)

45 X(2*1) - H(I)
50 DO 55 X1I,N2

XlI) 2:XCI)
X2(X) 2X1CI)

X3(1) 2X2(1)

55 X4(I) 2X3(1)

C
100 RETURN

END
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SUB'ROUTINE LINEL(N2.F -LNU-MELAT.BT)
C **

C:** LINEL CALCULATE THE ELEMENT MATRICES-
C:** FOR THE LINEAR ELEMENT MODEL

COMMON/E4LOCK1l/ NW0,Y0.TF.:'TO7 DT.TMAX. IFREOLC:ASENB. IBC
COMMON/BLOCK 3/ X (200),W( 200),TE (200) ,H( 200C),*FO( 200))
DIMENSION A(2,2) .8(2,2) .AT(N2,N2) .BT(N2,N2')

DO 15 L=1,NLIMEL
KL1 = LCASE*(L-1)

c-

C:..ELEMENT MASS MATRIX A(I,J)...
C

A~ll) = 2.0
A(1,2) = 1.0
A(2,) = 1.0
A(2,2) = 2.0

C
C..ELEMENT STIFFNESS MATRIX B(I.J)...
C

TKO = TK%'
WO = 1./W(L)

C:..CONVECTIVE TERMS=;..

V11 = -3.-.*WO*Vo
V12 = 3.*WO*YO
V21 = -3.*WO*VO)
V22 = 3.*WO*VO

C
C..DIFFUSION TERMS ..
C

CK11 = 6. *TKO*WO**2
CK12 = -6.*TKO*WO**2
CK21 = -6.*TKO)*W0**2
CK22 = 6. *TKC*WO**2

C
B(1.1) = V11 + CK11
B(1,2) - V12 + CK12
B(2.1) = V21 + CK21
B(2,2) = V22 + CK22

DO 10 I=i.I<L
DO 10 J1.,KL

C
C..FORMATION OF THE GLOBAL MASS MATRIX AT(I,J)...
C

AT((I+KL1)d(J+KLi)) -=AT((I+KIC1(J+KL1)) + A(IJ)

C..FORMATION OF THE GLOBAL STIFFNESS MATRIX BT(IJ)...
C
10 BTU(I+KLI),CJ+KL1)) -BT((I.KL1),(J*KLI)) + B(I.J)
15 CONTINUE

RETURN
END
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SUBR':'LT INE OU1-TPULT(CN2,NH', T, NU-MEL, NNODIE)

C:** OUTPUT PRINIc. RESU;..LTS: AT S-:PECIFIED TIME
C:** INTERVALS BY IFREG.
C** OUTPUT CALLSi EXTERNAL SUBROUTINE ONPLOT(

C.** FOR PLOT ING RESULTS.

* *

COMMON/E'LOCWX/ N,WO, VO, TV.,TO),EDT,TMAX, IFREO ,LCASE.NB, IBC:
COMMON/BLCWP2/ X1(200)) ,X2( (:00) ,X3(200(),X 4(2C)),vX (200()
COCMMON/BLOCJ::3/ X (200)C),~W(C) TE 200C)C))H(200 ), FO (200')
COMMON/BLOCK5! AO',A1 .A2,A3,A4,A5,N1,R1,RN
DIMENSION DIH( 200() ,DX (200C) ,RNOE (20)

C:

C

TKO = P'
SUMi = 0.0
SLIM2 = 0. 0

I F(LCASE. E0.2) GO TO 100
DO 10 I= 1,NNODE

10 H(I) = X(I)
DO 15 I=1,NUMEL

15 TECI) = CH(I+1) - H(I))/W(I)
DO 20 I=1,NUMEL

DH(I) = AO*CH(I) + H(I+1)) - CVX(I) + YX(I.-1))
DX(I) = 2.*CH(I) - H(I+1))*vOj*DT/WCI)
SUMI = SUMI + DH(I)

20 SUM2 = SUM2 + DXCI)
SUM3 = ABS(SUM1) - ABSCSUM2)

C
0O TO 150

C:..COMPUTE THE DISPLACEMENT & TEMPERATURE FOR THE CLUBIC: ELEMENT...

100 DO 110 I=1,NNODE

TECI) = XC2*I-1)
110 HCI) = X(2*I)

DO 115 1I1,NUMEL
DHCI) = CTE(I+1) - TE(I))*AO - VXC2*I+1) + YX(2*I-1)

1 - 6.*(CHCI+1) + HCI))*AO - YXC2*I+2) - VX(2*I))/WCI)
DX(I) = 12.*DT*(VO*(HCI+1)-HCI)) + TKO*CTECI*1)-TE(I)))/WCI)**2
SUMI= SUMI + DH(I)

115 SLIM2 = SUM2 + DX(I)
SUM3 = ABS(SUM1) - ABS(SUM2)

C
C:..PRINT THE RESULTS ..

150 WRITEC6.,610) T
WRITE (6.620) SUMI ,SUM29SUM3
WRITE(6, 605)

DH(NNODE) = 0.0
DXCNNODE) = 0.0
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C...................... LOiT RESUL T....

Di' --0- I =1, NNODIEE

RNUDE ( I) FLOAT ( I)

C ALL CI:NP-LI:IT ( FNI:'DE, TLENNC'DLE)

600 FCORMAT (5X, E14.A.)
605 FOIRMAT ( / / /!/, NO111AL POINT i-n' 1 E.LA':EMENT TE-TEMFERATURE

1 DlH/ 11 DR/LiT )
610 F:IRMAT( IHI ,5 X, TIME = F.//
615~ FLiRMAT ( I12, 4X, 4F 15.&6)
620 Fjrl4Tc_-flX, 'DH/DT =Flo. I.6SX.DH/'X ,F I(i.6,5'X, F12.6.,//

RE rIURN
END

S :UPROU1.T I NE flzVEC T(N2, NX, NY, T, NUMEL, AT, BT, C, IFP)

OVECT SETS THE RIGHT HAND SIDE VECTOiR 0(J)
AND FORMS THE SYSTEM O'F EQULATIONS

C*C:(I,.J)*X( I) = 0('0 1- Li 1I,NY

C.** OVECT C:ALLS SUBROUTINE SOLVE FOR THE
C:** SOCLUTION OF THE SYSTEM OF EQS.

C:* *
COMMON/F(LO:'Th 1./ N WO', V0 TK:, TO, L'TTMAX, IFREJ, LCAS:'E,Nt, I BC
COMMON/BLOC 2/ Xl (200)) ,X2(200(') , X:(200.) X4 ( 20) YX (20)
COMMON/BLOC13/ X (200)) W(200) ,TE (200 ),H (200 )),FC0(200)(
COMMON/ BLOCK4/ NNTS_: NNQS, NTS: (100) ,NOIS (200))
COMMON/EILOCVK'5/ A0,A1,A2,A3,A4,A5,N1,R1,RN
DIMENSION AT(N2,N2) ,BT(N2,N2) ,C (NY,NY), IP(NY)
DIMENSION F( 200C),C0(200C), LISTX (100)), LIS:TY( 20)

PI = 3.1j4159

C..BOUNDARY CONDITIONS ..

IF(T.LE.TO)) GO TO 10
TE ( 1 ) = 0. 0

GO TO 15
10 TE~i) = RI + RN*S-IN(T*PI)
15 CONTINUE

IF(NE4.EO.1) TE(1) =0.0
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....FORM THE RIC.-HT HAND S-IDE VECTOR F(Iv ..

DO 20 I=1,N2
FOC( I ) = 0. C

20 YX(I) = A1*Xl(I) + A2-*X-"I1) + A3-*XU-:I) +A4*A4(I)

IF(LCASE.EJ.2) GOc TO 2-5
FOCI) =-t.*TK.*DT*TE(1)/W(1)

FQ(N1) =t.*TK.*DiT*TE(N)/W(N)

GO0 TO 30
25 CONT INUE

F0C2) =-42-0.*TK*DT*TE(1)/W(l)

FO(N2) =420.*TK*DT*TE(N+1 )/W(N)
3C3 C:CNT I NUE

DO 40 I=17 N2
F(I) = FOCI)

DO0 40 J=1,N2
40 F(I) = F(I) + ATCIW.-)*YXCJI)

DO 50 I=1,NY
DCI) = FCNQS(I))

DO 45 K1I,NX
45 Q(I) = QCI) - ETNCI),NTScK;i:))/BTNTS(K..),NTS;(KH)*FCNTSU ))
50 CONTINUE
C
C.. OLVE THE SYSTEM OF EC4U-A71ONS...
C:

CALL SCLVE(NY,NY,C:,0,IP)

DO0 10(3 11.NY
100 XCNOSC I)) = DCI)

IFCLCASE.ED.2) GO TO 120)
X(1) = X(2)-TEI)*W(I)

IFC IEC:.NE. 1)
*X(N+1) = X(N) + TECN)*W(N)
0O TO 130

120 CONT INUE
DO 12.5 j1I,NX

125 X(2*NTSCI)-fl TE(NTSC-;IH)
130 CONTINLIE

DO 150 I=1,N2
X4(1) = X:3(I)
X3(1) =X2(I)
X2(I) = X1CI)
Xl(I) =XCI)

150 CONTINUE
RETURN
END
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SUBROUTINE SOLVE (NN, NDIM, C, 0, IP)

C* SOLUTION OF LINEAR SYSTEM, C*X = 0
C* I NF'UT..
C* NN = ORDER OF MATRIX.
L* NDIM = DECLARED DIMENSION OF ARRAY C

S C: = TRIANGULARIZED MATRIX OBTAINED FROM DECOMP.
-*- 0 = RIGHT HAND SIDE VECTOR.
C:* IP = PIVOT VECTOR OBTAINED FROM DECOMP.
C* DO NOT USE IF DECOMP HAS SET IER .NE. 0.
C* OUTPUT..
C:* 0 = SOLUTION VECTOR, X

DIMENSION C(NDIM,NN), Q(NN), IP(NN)

IF (NN .EQ. 1) GO TO 50
NMI = NN - I

DO 20 K = 1,NM1
KP1 = K + I
M = IP(K)
T = Q(M)
0(M) = Q (K)
Q(K) = T

DlO 10 1 = KP1,NN
10 Q(I) = 0(I) + C:(I,K)*T
20 CONT I NUE

DO 40 KB = 1,NMI
KMI = NN - KB
K = KMI + I
Q(K) = 0(K)/C(K,K)
T = -Q(K)

DO 30 I = 1,KMI
30 Q(I) = 0(I) + C(I,K)*T
40 CONT I NUE
50 Q(1) =0(1)/C(1,1)

RETURN
END
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